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1 Three Preliminaries

1.1 Ms W

The Symphonie Philosophique reserves by ancient custom a chair for the
viola de gamba. The current virtuosa, Ms W, is universally acclaimed for
her work in other ensembles. Yet the symphony dropped early music from
its repertoire many seasons ago. In her many appearances, Ms W. has never
played a note.

Subscribers differ on Ms W's aesthetic contributions. One group insists that
her presence clearly enhances the aesthetic value of performances. As Miles
Davis taught us, music is as much about the notes you don’t play as the ones
you do. Her presence gives the symphony far more possibilities against which
the actual music can be juxtaposed, and thereby a richness and splendor
that other ensembles cannot match. (The most breathless insist that if you
couldn’t play viola de gamba parts, you really hardly count as an orchestra
at all.) Skeptics are more blunt. She does not add to the music. How could
she? She does not play.

The core of this dispute is over the constitutive role of counterfactual prop-
erties. One side thinks that aesthetic value (whatever it is) depends both on
what actually happens and on what could have happened. Aesthetic value
is, on this picture, a counterfactually loaded property. Many goods are like
this (Pettit, 2015). The other side thinks that aesthetic value is not coun-
terfactually loaded, and that only the actual matters to the aesthetic. Many
properties are also like this. Hence there’s room for debate.

The question of whether a property is a counterfactually loaded one is behind
many philosophical disputes. This piece will talk about an under-appreciated
place where the conflict arises, and how it causes headaches for the compu-
tationalist about conscious experience.

1.2 The Action Max

When I was young, several unscrupulous companies offered a low-cost alter-
native to video game consoles. The Action Max came with a small light-gun



setup and a VCR tape. I watched the commercials in breathless wonder: how
could an ordinary VCR play video games? My parents were less interested
in the answer, so I had to wait until I was an adult to learn what disap-
pointment I had avoided. The Action Max played a tape of a thrilling space
battle that you could shoot at. But it was just an ordinary VCR tape: noth-
ing you did would make a difference to the outcome. The same ships would
explode, the same dangers would be narrowly avoided, the same triumphal
success awaited at the end. Calling this a video game seems like a stretch.
That is not a claim about what happens on the screen, or even how well
the actual action matches up with the players intentions. Even if the movie
exactly matched what a player actually did, there is no room for departure.
What makes something a game is options and contingency, and the Action
Max lacked those. Being a video game, in short, is a counterfactually loaded

property.

Video games are a kind of computation, and the point holds true of compu-
tation more generally. Consider a humble Turing machine (TM). Call him
Simon. Simon implements a reasonably complex machine table that lets him
reduce his input into its prime factors. Put Simon on some input 7 and he’ll
click away merrily. Now suppose our unscrupulous Turing machine dealer
offers a discount on a simpler model, Theodore. Theodore cuts costs: he
does not have a machine table, and instead just has a tape recording that
contains each transition that Simon would make on 7. Each change to the
tape, each change of internal state indicator, each movement will be faith-
fully reproduced. Theodore will also factor 7, and just as fast a Simon does!
Hardly a bargain, you protest. Given any input other than 7, Theodore will
click along just the same. But computation must be counterfactually sensi-
tive. Simon, and Simon alone, counts as implementing o because he could
do the right thing on any input. Theodore is not just worse than Simon; his
lack of counterfactual sensitivity means he doesn’t even count as computing
in the first place.

Computation thus seems like a counterfactually loaded property. This is im-
portant for more than just the fight against shady Turing machine dealers.
Computationalism about consciousness is the thesis that phenomenal prop-
erties supervene on computational ones—that is, that being the right kind of
computer is enough to be conscious. Computationalism is exciting because
it is a broad tent: brains compute, silicon does too, and so your laptop (it
seems) could be just as conscious as you. A class of skeptical arguments
pushes back by saying that computationalism is far too permissive, implausi-
bly so. The molecular meanderings of buckets of water and stretches of brick



can be mapped to the actual activity of a TM too (Searle, 1990; Putnam,
1991). Surely bricks aren’t conscious, though!

Nor do they compute, goes the standard response. At a minimum, computing
some function 7 requires that a system’s activity would have been isomorphic
to some abstract machine’s for any of the inputs over which 7 is defined.
Bricks don’t manage that. Attention to counterfactuals is thus necessary to
avoid explosion. Which is all again by way of saying that computation is
a counterfactually loaded notion. Two things can differ in computational
status—in whether or what they are computing—without differing in what
they’re actually doing.

1.3 Anaesthetics

What about consciousness? Start with things that remove it. The mecha-
nism of action of inhalational anaethetics remains something of a scientific
puzzle, especially given the ability of chemically inert gasses like xenon to (re-
versibly) remove consciousness at high concentrations. Most theories agree
that interactions with the lipids in the neural membrane are crucial, as they
alter the ability of the neuron to fire given appropriate stimulation (Frost,
2015). Here there’s an important nit to pick. The action can’t just just
via changing the membrane properties, however. For anaesthetics affect all
neurons indiscriminately (or let’s suppose). What makes a difference is that
neurons that would have fired are silenced. Effects on neurons that wouldn’t
have fired anyway (one might think) don’t make a difference to conscious-
ness. To knock you out, in other words, I only need to make the firing
neurons quiet—the already quiet ones aren’t making a difference to what
you experience.

Indeed, that seems to be a quite general intuition not just about the loss of
consciousness, but about the contents of consciousness altogether. A given
episode of phenomenal experience supervenes (most think) on brain pro-
cesses. That is to say, what you're aware of over an interval supervenes on
the actual activity of the brain over that interval. Intuitively, neurons that
are completely silent and inert over the interval can’t make any contribu-
tion to what you're aware of. This is to say very little about what ‘activity’
amounts to: the important thing is just that phenomenal awareness depends
on what a system does, not on what it would do or might have done in other
circumstances.



This is not a universally held thesis, but denying it forces you to say really
odd things. Consider Tononi’s influential Information Integration Theory
of consciousness (IIT). (Tononi, 2004) is committed to the importance of
a ‘qualia space’ (Tononi, 2004) or a ‘cause-effect space’ (Tononi and Koch,
2015) that traces out all of the possible informational states a system might
be in. A conscious experience is “a different point in the multidimensional
qualia space”, and “in every case, it is the activity state of all elements
of the complex that defines a given conscious state, and both active and
inactive elements count.” (Tononi, 2004, 9). (He would, one imagines, be a
supporter of Ms W’s work.)Yet this is a very weird commitment. As Fekete
and Edleman point in a nice discussion

if silent units indeed contribute to a subjects phenomenal expe-
rience, cooling some of them reversibly (which would inactivate
them without causing them to fire) would alter the experience.
Having offered this prediction, Tononi stops short of explicitly
addressing the crux of the problem: how can presently inactive
silent or silenced units contribute to present experience? ...It
seems to us that making experience depend on a potentiality
without explaining how it actually comes to pass falls short of
completing the explanatory move. (Fekete and Edelman, 2011,
813)

That does seem to be the common intuition. Consciousness is an active,
constructive process, and inactive units cannot add anything.

Of course, spelling out ‘actual activity’ brings more complications than one
might expect.! Let’s put them aside. I assume that there is some intuitive
distinction between the active and the inert, and that it would be surprising

In an awake, conscious adult the whole brain is constantly active, and this high tonic
level of activity appears to be a prerequisite for conscious experience (Raichle and Snyder,
2007). While action potentials are discrete and distinct there is near-constant churn at
the synapses, and balanced excitatory and inhibitory input can be neurocomputationally
important even if it doesn’t result in firing (Logothetis, 2008). Firing delays are also
neurocomputationally important due to spike-timing dependent plasticity and timing-
and phase-dependent processing (Izhikevich, 2006). Further afield, insofar as the actual
activity thesis requires on a notion of simultaneous activity it is incompatible with special
relativity. Whatever the supervenience base for conscious experience, it arguably ought to
be something that is invariant across inertial reference frames (Power, 2010). The latter
may seem especially recherché, but the easiest ways to avoid it—moving to causality or
ordering rather than strict simultaneity—would require a careful rethink of the setup.



if the inert actually made a contribution to consciousness (however that is
spelled out).

2 Maudlin’s Argument

Simple stories have led to a troubling conflict. Computation is counterfactu-
ally loaded: it depends in part on what could happen. Consciousness isn’t:
it depends only on what does happen. That mismatch seems like it ought to
trouble the computationalist.

Tim Maudlin’s (1989) “Computation and Consciousness” argues just that.
Maudlin’s argument remains relatively obscure, in part because the bulk
of his paper is devoted to constructing an elaborate example that is easily
misinterpreted. That is a shame, as the core argument is simple and powerful.
The preliminaries above are there to bring out what I take to be the core of
Maudlin’s argument. I present it here in schematic form:

1 If computationalism is true, then there is some Turing ma-
chine 7 which, when run on input 7, is sufficient to have
phenomenal experience.

2 Two things can differ in whether they implement 7 because
of differences in wholly inert machinery.

3  Two things cannot differ in whether they are conscious be-
cause of differences in wholly inert machinery.
[Contradiction]

Computationalism is false.

Premise 1 is meant to be a basic commitment of the computationalist, while
premise 3 depends on the intuition sketched above. Premise 2 seems plausible
insofar as computation is counterfactually loaded. But an ordinary TM like
Simon may have no wholly inert machinery while processing 7—everything
is active at some point during the run.

Maudlin’s central innovation is a thought experiment designed to show how to
make a TM where the counterfactuals are supported by wholly inert machin-
ery. (Interested readers should consult his paper for details of the machines
Olympia and Klara: I'll give a streamlined version here.) Return to Simon
and Theodore. Let us suppose that Simon is configured to implement to



compute 7 on 7. ‘No problem!” says the computationalist. ‘Turing machines
can be conscious!” Now Theodore apes what Simon does simply by follow-
ing a pre-recorded sequence. Following a pre-recorded sequence seems like
the sort of thing that isn’t enough to be conscious. (In Maudlin’s example,
the corresponding machine simply sprays water from a hose.) ‘No problem!’
says the computationalist. ‘“That thing is too simple to be conscious. But it
doesn’t compute, either, and our thesis is about computation!’

Now the kicker. Consider a deluxe machine, Alvin. Alvin is a copy of
Theodore with an extra sensor and a powered-down copy of Simon strapped
on the back. On a run on 7, Alvin simply reads off of Theodore’s tape as
usual. If the input deviates from 7, however, the extra sensor switches off
the Theodore-bits, powers up the Simon-bits, sets them in the appropriate
way, and starts it running.?

Alvin is now counterfactually sensitive: he has all of the range of Simon.
Hence, Maudlin claims, he computes 7. But Alvin shows that premise 2
is correct: the difference between computing and not computing is in the
inert bits of his machinery. Note that we could change Alvin to a non-
computing thing by sticking a passive bit of insulation in the right spot and
thereby prevent the Simon-copy from from powering up. On a run on 7,
Alvin’s actual activity doesn’t differ from the non-computing, non-conscious
Theodore’s—again, the added bits are all completely inert. If Theodore’s
simplistic activity isn’t enough to be conscious, then Alvin’s isn’t either.

What to do? Giving up on premise 3 would be too strange. As Fekete and
Edleman noted, it would be weird to think that we could be changed to
zombies solely by (say) anesthetizing some nerves that were’t going to fire
anyway. Giving up premise 2 won’t work: counterfactuals are necessary to
prevent an explosion in the things that count as computing. But that leaves
only computationalism to abandon. Hence consciousness cannot depend on
computation. The modal mismatch between their supervenience bases as-
sures this.

A surprising conclusion, not in the least because it depends on what appear to
be relatively lightweight assumptions. To be clear, I do not think Maudlin’s
argument succeeds. But I think that it has the feature of all beautiful thought

2Part of the cleverness of Maudlin’s example is to show how this switch function can
be made using stuff that itself remains wholly inert on a run on the special input 7. 1
leave that as an exercise for the reader.



experiments in philosophy: pushing back helps us clarify our assumptions.
In the case of computationalism, it forces us to look at what seemed like a
very simple and general thesis and constrain it in interesting ways.

Before moving on, it is worth distinguishing Maudlin’s argument from a
number of other arguments in the literature. Though it has interesting rela-
tionships to several other anti-computationalist arguments, it is sui generis.
I think the reception of the argument has been blunted in part because many
readers confuse it with one of these other, related arguments.

Maudlin’s work bears an important relationship to various ‘exploding imple-
mentation’ arguments, which claim that any sufficiently complex object can
implement any finite-state automaton (Searle, 1990; Putnam, 1991; Chalmers,
1996b; Bishop, 2009a,b). Maudlin’s argument does not require exploding im-
plementation to be true, however. Indeed, he presupposes (at least for the
sake of argument) that appropriate counterfactual restrictions are sufficient
to avoid explosions. One might instead reframe his argument as a dilemma
for the computationalist: either one accepts explosion, or else one accepts a
modal mismatch between computation and consciousness.

Olympia and Alvin may seem like instances of a ‘funny implementation’
strategy. Funny implementation arguments (such as Block (1978)’s Chinese
Nation) rely on intuitions that a non-standard implementation of a program
couldn’t possible be conscious. Though Olympia has occasionally been taken
this way (see e.g. Fekete and Edelman (2011)), I agree with Maudlin that
the force is different. The argument is not merely that machines like Alvin
look strange. Rather, the argument is that Theodore isn’t conscious by the
computationalist’s own lights because he does not compute, and Alvin does
not differ from Theodore in ways that ought to matter for consciousness. The
problem is thus not with the oddness of the machine, but its relationship to
other machines that aren’t conscious by anyone’s lights.

The argument also bears an interesting relationship to some of Searle’s (1980;
1990) critiques of computationalism. (This link is explored further by Bishop
(2009a,b)) Many of Searle’s critiques can be read as expressing a concern over
the fact that various conditions have to be in place for something to count as
a computer. Yet it doesn’t make sense to ask whether something ‘counts as’
conscious—either you are or you aren’t. Searle’s concerns tend to focus on the
need for something with non-derivative intentionality to interpret something
as a computer (which is in turn wrapped up with questions about the status
of the symbols used by the computer, which is Searle’s ultimate concern).
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Maudlin’s argument is related, but more sparse. There is no issue here about
the semantic interpretability of the symbols that Alvin uses. Even if all it
takes to ‘count as’ a computer is counterfactual input sensitivity, that alone
is enough to cause a mismatch between the demands of the phenomenal and
the computational.

3 Consciousness, Processes, and Programs

There are many possible responses to Maudlin. Rather than catalog them
individually®, I want to come at things from a slightly different angle.

Begin with an odd feature of of Maudlin’s argument. Computationalism, in
my hand-waving introduction of the thesis, was a claim about computation
broadly construed. Maudlin’s argument, by contrast, reads computational-
ism more narrowly as the claim that some Turing machine can be conscious.
Maudlin is explicit about the latter: his ‘necessity condition’ claims that
computationalism “asserts that any conscious entity must be describable as
a nontrivial Turing machine running a nontrivial program.” (1989, 420). No
defense is given of this. Presumably the idea is that TMs are universal, and
that universal machines can compute whatever function you please. Hence
TMs (despite their notoriously unwieldy nature) are as good a candidate for
conscious experience as anything else.

Yet this embodies a substantial assumption. As Sprevak notes when dis-
cussing Searle, while a universal TM can compute any function that any
other architecture can compute,

...1t is not true that a universal computer can run any program.
The programs that a computer (universal or otherwise) can run
depend on that machines architecture. Certain architectures can
run some programs and not others. Programs are at the algo-
rithmic level, and that level is tied to the implementation on
particular machines. (2007, 759)

I think this is absolutely right. Computationalism could be formulated in
terms of input-output functions. It needn’t be, and it shouldn’t be.

3A task mostly done, albeit in a Maudlin-sympathetic way, by (Bartlett, 2012).



Let’s flesh that out. Begin with some terminology. An architecture is a set of
primitive operations and basic resources available for building computations
(Pylyshyn, 1984, 93). The Turing machine architecture has as primitives (i)
changing (or preserving) a single square of the tape (ii) moving the head
along the tape one square left or right, and (iii) changing state to one of a
finite number of other states.A computational architecture specifies its prim-
itives at a relatively high level of abstraction: we ought not care what a TM
tape is made of, or how long it takes the head to move to a new position.
A computational process, as I use the term, is a temporally extended series
of primitive operations. A program is a set of instructions for building a
machine that, when combined with appropriate context, generates a compu-
tational process. The relationships between contexts and outputs defines the
mathematical function that a machine computes.

Many different machines can compute the same mathematical function: this
is the upshot of TM universality. But different architectures can do so in
very different ways, because they have different primitives available from
which to build computational processes. That is why, as Sprevak notes, we
need to make clear whether computationalism is a thesis about mathematical
functions (in which case we don’t have to care about the architecture of our
machine) or whether it is better expressed in terms of processes, architectures,
or programs (in which case we do).

Consciousness can’t depend on what function a machine computes. Sprevak
(2007) gives several good arguments. Here is another. Take some com-
putable? function f; make it one that a TM takes many steps to perform.
Any computable function can be a primitive in some architecture: that is,
one can posit a computational architecture that performs f as a single op-
eration. Much of early chip design consisted in identifying useful functions
that could be made into primitives: most computer architectures today have,
for example, a primitive that does bit shifting, which takes multiple steps on
a TM. The Intel 8087 introduced primitive support for functions that ap-
proximated trigonometric functions, for example. From the point of view of
that architecture, computing sines and cosines is a single operation, and so
occurs in a single computational step.® Of course, the implementation of that
primitive might be itself be complex. That is irrelevant, just as the number

40r non-computable function, for that matter. The point can be made with com-
putable functions, though I have argued elsewhere that Olympia is herself actually an
oracle machine (Klein, 2015).

®More or less. As you might expect, approximating transcendental functions in floating
point is not for the faint of heart; see (Ferguson et al., 2015).
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of gears or wires or gallons that implements a single primitive in a TM is
computationally irrelevant.

Return to consciousness. Take any mathematical function f., the computa-
tion of which is supposed to be enough for an extended bout of phenomenal
experience. We can posit an architecture has f. as a computational primi-
tive. But surely, executing a single primitive in a single computational step
is not enough for conscious experience. From the computational point of
view, there’s no structure at all there. Hence there’s no way to see how (for
example) different elements of that conscious episode might change, because
there’s no structure in the computational supervenience base that could be
changed.

Yet phenomenal experiences clearly have a combinatorial structure, and com-
putationalists ought to say that this is mirrored by the combinatorial struc-
ture of the computations upon which it supervenes. Indeed, the combinato-
rial structure of computation is one of the things that makes computation-
alism so great in the first place.

The upshot is clear: phenomenal consciousness isn’t a matter of what func-
tion you compute It must depend on something more computationally fine-
grained. That is not an abandonment of computationalism, though. It is a
move from an implausible formulation to a more sensitive one.

The link between computational complexity and complexity of phenomenal
experience also allows us to say something about a traditional objection to
computationalism, usually attributed to Ned Block.® For any function you
please, so long as it has a finite domain you can imagine a simple lookup
table that computes the same function. The typical response is either to
deny that sufficiently large lookup tables are physically possible (Dennett,
1998), or else to deny that lookup tables count as computations. The former
feels unprincipled, and the latter would be surprising: lookup tables are
widely used in computer programming, and play critical roles in lower-level
programming (Duntemann, 2011, Ch 10).

Instead, we might point out that lookup tables are suspicious precisely be-
cause lookup requires a batch of information to be present as a computational

SFrom his (Block, 1981). Though the lookup table arises as an objection to the Turing
test—the link to phenomenal consciousness comes via a conflation with the the Nation of
China thought experiment from (Block, 1978).
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primitive, and because lookup is usually envisioned as either a primitive op-
eration or composed out of a small and repetitive handful of primitives. That
mismatch between the demands of computation and of consciousness is what
drives our intuition that that simple lookups can’t be sufficient for conscious-
ness.

Input-output function is thus the wrong grain of analysis for consciousness.
That’s not a huge surprise: it’s arguably the wrong grain of analysis for
cognitive science as well (Pylyshyn, 1984). Instead, we should look to archi-
tectures and the processes that belong to them. Note that this doesn’t (yet)
require constraining consciousness to a particular architecture. Architectures
themselves can be taxonomized. ‘Turing machine’ picks out a very general
architecture which itself has many species depending on the number of sym-
bols and states available. Different species of TM have different complexity
profiles as well—you can do things more quickly with numerous symbols than
you can with just two, for example.

Higher-level taxonomy is also possible: there are important differences be-
tween architectures that process input serially from ones that have primitives
that operate over the entire input at once.” Similarly, architectures differ in
the primitive data structures available to them, the kinds and access param-
eters of memory available, and so on. Such concerns are far from ad hoc.
Architecture is important because it places constraints on the time and space
it would take to compute a particular mathematical function. These differ-
ences in computational complexity are the bread and butter of computer
science (Aaronson, 2015). They may well matter for consciousness.

A final caveat before returning to Maudlin. I have talked about architectures
and processes rather than programs. The relationship between a program and
the process it gives rise to can be a complicated affair. I follow in thinking
that programs “would not be of much use unless they could be used to en-
gender (not just to describe) computations. Programs, that is, are treated
as much as prescriptions as descriptions” (1996, 36).® In some cases, pro-

"Indeed, sufficiently exotic architectures can have surprising advantages over traditional
architectures—Dewdney (1984) gives a delightful example of the speedups available in list
sorting with by analog computers that utilize dry spaghetti and a sufficiently large forklift.

80f course, not all computations involve running programs, and some computational
processes (like those implemented in brains) weren’t built by someone following a pro-
gram. This has caused confusion in the past, but it’s simply another reason not to put too
much weight on programs as the unit of analysis. Instead, when a cognitive neuroscientist
(say) gives something that looks like pseudocode but for the brain, we can say that it

12



grams simply specify a series of primitive operations to be performed. But
that is typically only the case for very, very low-level languages. Higher-
level languages are usually intended to be architecture-independent. They
must be compiled before they specify a process in a particular architecture.
Compilation is thus a complex relationship of translation.® In less familiar
programming styles, a program may not even specify the temporal order
of operations, leaving that to be determined by context (Klein, 2012). Be-
cause of cases like these, I think it is better to consider programs as a series
of directions for building a computational process. Those directions must
themselves be interpreted in order to actually build a process.’

If we don’t distinguish programs and the processes they can give rise to after
compilation, we can also generate additional, and unnecessary, versions of
Maudlin’s argument. Bishop (2009b), for example, gives several purported
counterexamples to computation that rely on the fact that optimizing com-
pilers might eliminate certain code paths. Similarly, we might note that
compilers can speed execution by unrolling loops or by baking control logic
into a simple lookup table. But that means that a good compiler might
take a program that appears to specify a complex process and run it in an
architecture where the complexity is packed into a single primitive.

Fair enough. That only shows that the computationalist ought to be wary
of—or at least very, very careful about—formulating their thesis in terms of
programs. It is the processes that computers run, and the computational
processes that are build out of them, that are the appropriate grounds for a
supervenience claim.

4 Alvin’s True Nature

If you buy all that, then it should now be pretty clear what the computa-
tionalist ought to say about machines like Olympia and Alvin. Both were

specifies instructions to build a model (given some implicit semantics) that is isomorphic
to the brain in the relevant respects. In general, respecting the distinction between de-
scriptions of models and descriptions of the world is the key to solving many puzzles about
implementation (Klein, 2013).

9Thanks to Peter Clutton for emphasizing this point to me.

10Interpretation’ here is meant to be metaphysically lightweight: humans can interpret
simple programs to build a machine, but the power of computers is that they can also
interpret programs given in a suitable format.
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claimed to be TMs on the basis of their actual and counterfactual similarity
to what a TM would do. But there are other architectures that emulate
TMs. Olympia and Alvin belong to one of those, I claim.

Consider an architecture A, which has all of the primitives available to TMs
plus an additional lookup instruction: on one state i, they transform the
tape according to a certain pre-determined sequence j. Otherwise, they
transform the tape according to j up to the point where it diverges from
7, and then switch over to running a machine table p. One might have
J match exactly what what a TM running p on ¢ would do. That is what
Olympia and Alvin do. Yet nothing constrains machines in A to do so. Some
machines in .4 might change the tape in a way that no TM actually could—
for example, the same state and input might lead to a different output at
a later computational step, which is something that a TM cannot do. This
suggests that A machines are different in kind from TMs, even when they
happen to act in similar ways.

On Maudlin’s view of computation, there is no space between ‘acting like
a Turing machine’ and ‘being a Turing machine.” The latter is just de-
fined in terms of the former. But there’s good reason to reject this notion,
precisely because it can’t distinguish between implementation and emula-
tion. By contrast, the view of implementation I have advocated is one on
which an architecture defines a set of mechanisms (Piccinini, 2007, 2015).
These mechanisms have common spatiotemporal parts, each of which inter-
act causally. By those lights, Alvin and Olympia don’t have the right set of
parts interacting in the right way to implement a TM.

Here’s another way to put the point. Upgrading Alvin to a machine that
computed an entirely different function on ¢ would be a trivial matter from
the point of implementation: one would need to change only the sequence
j. On the other hand, changing a TM to compute a different function can
require arbitrarily many changes to the machine table.

From a programming perspective, recall, the architecture provides the func-
tional primitives from which more complex processes must be built. This
means that the basic operations defined by the computational architecture
are also the basic loci of intervention upon a computational system. An
architecture that provides both multiplication and addition as primitive op-
erations can be directly intervened upon in a different way than one that
provides only addition as basic and derives multiplication.

14



Considerations about computational architectures are explanatorily critical
insofar as we take an interventionist stance on explanation. This is another
important departure from accounts of computation that focus solely on iso-
morphism between machine tables and implementing machinery (Chalmers,
2011). Explanatory claims are claims about causal influence. Claims about
causal influence require a well-defined sense in which one could manipulate
the system in question from one state to another (Woodward, 2003, 115ff).
To say that something belongs to a computational architecture, then, is to
define the basic computational interventions that could be made upon it.
That is what a mechanist approach to computation gives us.

Indeed, it’s worth nothing that a great number of responses to Maudlin and
related arguments rely precisely on thinking about the causal structure of
the implementing mechanism. Barnes (1991) focuses on the causal chain
that leads from input to output. Klein (2008) argues that we ought to look
to the dispositions that make true computational counterfactuals, and that
these in turn must have their categorical basis in well-defined parts of the
system. Bartlett (2012) complains that Klein doesn’t provide a story about
what counts as a well-defined part. Whatever the story, however, it seems like
it ought to link into a more general mechanistic story—perhaps by appealing
(for example) to the mutual manipulability of part and whole (Craver, 2007).

Yet it is clear that Alvin and Olympia do have different sets of parts to that
of an ordinary TM. Since Alvin and Olympia don’t have the right causal
structure, they don’t count as TMs. (This doesn’t mean that TMs could
actually be conscious, as per the argument in 3, but it’s important to note
that these guys aren’t even in the running.) Further, the causal structure
they do have puts them in a class of architectures that aren’t a plausible
candidate for consciousness. Those are claims about the causal structure of
the machines. But then causal structure—how the spatiotemporal parts of
the machines themselves are actually arranged and interact—is critical for
determining whether a computing machine is conscious.

The move to mechanism thus has what might be counterintuitive conse-
quence. Suppose I emulate a Turing machine on my computer: that is,
suppose I run a program that specifis a TM machine table and a tape, and
displays what the transitions would be on some virtual tape. Does my com-
puter thereby have a TM architecture? No.'! Its spatiotemporal parts are

" Assuming my computer is not actually a TM in the first place, or that its components
are not assembled out of TMs, or so on. The argument that follows is not meant to show
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just as they were when they left the factory. The primitive operations of
the TM are implemented in some unknown but presumably sprawling and
complicated way by the underlying architecture that my laptop actually has.

At best, then, say that my computer has a TM as a virtual architecture, run-
ning on top of the actual one. Because of the complex relationship between
virtual architectures and actual ones, it may be difficult to disentangle which
is which. Disentangle we must. For if the path we’ve been led down is the
right one, then we computationalists must say something that is suspiciously
close to what Searle (1980) says—there is no reason to think that a simula-
tion of an architecture is sufficient for consciousness. Virtual machines, even
the virtual machine that would arise from a simulation of my brain in all
computationally relevant detail, are not the right kinds of thing to support
conscious experience. The fact that a virtual machine has similar ‘organiza-
tional invariants’ (Chalmers, 1996a) to an actual architecture does not show
that it is the same as a process that actually has that architecture.

Thankfully, we needn’t inherit Searle’s pessimism. For the thrust of all of
this has been to say that if (as Maudlin claims) computation depends on
actual activity, then we really ought to look at the actual activity of actual
computing processes. If I think that a certain kind of TM is enough to be
conscious, then something actually has to get down on its knees and move
around the tape in order to be conscious Once we do, I suspect, we may well
find that the constraints on architectures are actually pretty minimal.'? Still,
I think Maudlin’s argument, when seen in this light, is not a failure. Even if
it does not take down computationalism. But it forces important constraints
on the computationalist thesis. Which things satisfy these constraints, and
why, is a nontrivial empirical question.!?

that a computer only ever belongs to one architecture, but rather that it can belong to
more than one architecture only under very specific conditions involving the coincidence
of spatiotemporal parts.

12Though not necessarily. As I understand them, Fekete and Edelman (2011) argue
that only computational architectures that can be formulated in terms of trajectories
through state-space (rather than successions of points in state-space) are candidates for
the grounds of conscious experience. While I like their overall picture, I worry about
the details: the move to trajectories seems to require a phenomenally smooth, continuous
transition between any two whole phenomenal states. That would, among other things,
rule out any architecture that has transitions between discrete states, including TMs (see
also Spivey (2007) for a similar argument). That seems to me to be both restrictive and
implausible: if I am shown a sequence of disconnected images, it seems like my phenomenal
state does make non-continuous transitions.

13Thanks to Peter Clutton, Stephen Gadsby, Annelli Janssen, and Antonios Kaldas for
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