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Abstract The so-called “dark room problem” makes vivd the challenges that
purely predictive models face in accounting for motivation. I argue that the
problem is a serious one. Proposals for solving the dark room problem via
predictive coding architectures are either empirically inadequate or computa-
tionally intractable. The Free Energy principle might avoid the problem, but
only at the cost of setting itself up as a highly idealized model, which is then
literally false to the world. I draw at least one optimistic conclusion, however.
Real-world, real-time systems may embody motivational states in a variety
of ways consistent with idealized principles like FEP, including ways that are
intuitively embodied and extended. This may allow predictive coding theo-
rists to reconcile their account with embodied principles, even if it ultimately
undermines loftier ambitions.
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What do Predictive Coders Want?

1 Introduction

1.1 The dark room problem

Predictive coding (PC) models depict the nervous system as a machine for
hierarchically minimizing the prediction error between internal models and
sensorimotor input. Such models have successfully captured a variety of specific
sensory and motor phenomena (Rao and Ballard, 1999; Huang and Rao, 2011;
Clark, 2013; Hohwy, 2013). Inspired by those successes, some philosophers
argue that predictive coding gives a quite general model of cognition—that is,
that everything we do can ultimately be explained in terms of the minimization
of prediction error (Friston, 2010; Clark, 2013; Hohwy, 2013; Clark, 2015).

Predictive coding draws further support from its formal links to Karl Fris-
ton’s Free Energy Principle (FEP). Proposed as an organizing principle of
brain function, the FEP states that “. . . any self-organizing system that is
at equilibrium with its environment must minimize its free energy” (Friston,
2010, 127).1 Free energy is an information-theoretic concept closely related to
entropy. Free energy, notes Friston “. . . bounds surprise, conceived as the dif-
ference between an organisms predictions about its sensory inputs (embodied
in its models of the world) and the sensations it actually encounters” (Friston
et al, 2012b, 1).

As I understand the two, PC is meant to be a story about how FEP is im-
plemented. FEP says that organisms minimize free energy, and that they do
so by minimizing the di↵erence between their predictions about the world and
the sensations they receive as input. PC postulates a mechanism by which such

1 Note that ‘equilibrium’ can mean two things: thermodynamic equilibrium and local
equilibrium with the environment. All organisms attempt to maintain local equilibrium
with their environment in order that they may avoid pure thermodynamic equilibrium.
Following Friston’s usage in this quote, I will use ‘equilibrium’ to mean local equilibrium
with the environment.
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minimization takes place. Hence FEP gives general bounds on self-organizing
systems, while PC gives a mechanism for implementing those systems. A heady
mix, made even more attractive by Friston’s austere mathematical formula-
tions of FEP.

According to both stories, the primary point of brains is to predict. You
might think that this omits something important, though. There is more to life
than just predicting what’s going to happen. We also do things. Prediction and
action, in ordinary parlance, seem like importantly distinct processes. They
have di↵erent e↵ects, and they rely on di↵erent sorts of states. Predictions
have to do with beliefs or credences: that is, we predict how the world is or
will be. Action, by contrast, depends on preferences: we act to make the world
the way we desire it to be. Credences and preferences can vary orthogonally,
which is a further reason to think they are distinct things subserved by distinct
neural states. Try to get by with only prediction, and you’ll end up just sitting
there.

That is the nub of what has come to be known as the Dark Room Problem.2

If I find myself in a dark, quiet room, I could predict very well what’s going
to happen; indeed, there is a sense in which I could do no better at modeling
my world. The world outside is complicated. Yet we don’t do this. Hence the
challenge. As Andy Clark puts it:

How can a neural imperative to minimize prediction error by enslav-
ing perception, action, and attention accommodate the obvious fact
that animals dont simply seek a nice dark room and stay in it? Surely
staying still inside a darkened room would a↵ord easy and nigh-perfect
prediction of our own unfolding neural states? (2013, 191)

Indeed, one of the things that we could model very accurately is that we’d
die by continuing to stay in the room. Again, death is far more certain than
anything that would happen were we to leave. Yet finding oneself in a dark
room is not a death sentence. Something has gone wrong.

1.2 I’ll be in my basement room

The dark room problem should be phrased with care. The di�cult question
is not “Why do organisms like us seek food rather than dark rooms?” There
are plausible answers to that. Hohwy, for example, notes the advantages that
accrue to humans to seeking complex, novel environments (2013, 175). Yet
the dark room problem didn’t arise because we were confused about human
ethology. It stems instead from the concern that prediction is the sort of thing
that can go on without being accompanied by any action whatsoever. The
di�cult question is really “Why do organisms like us seek anything at all,

2 The original formulation was suggested by Mumford (1992) (though as an observation,
not an objection): “In some sense, this is the state that the cortex is striving to achieve:
perfect prediction of the world,like the oriental Nirvana. . . when nothing surprises you and
new stimuli cause the merest ripple in your consciousness” (p247fn5).
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rather than just sitting quietly?” That is, the dark room ought to be read as
presenting a problem about motivation, and how motivating states like desires
can exist in a predictive coding framework.

To sharpen the point, consider what I take to be the obvious answer about
the dark room. I in fact spend several hours a night laying quietly in a darkened
room. What gets me moving? Usually, I’m hungry, and so I want to eat. If not
for that, I might happily stay in bed for longer. But predicting hunger is not
the same as being motivated by it. As I lay with my eyes shut, my cognitive
system could predict perfectly well the progression of hunger signals. (It is not
that complicated: I will get more and more hungry, and then die.) Similarly
so for any other sensation I might feel.

Indeed, the dark room is just the most pressing way to illustrate the point.
The problem is just clearest when prediction is trivial, but exactly the same
issue arises for complex environments. Why couldn’t I go about my day, pre-
dicting and modeling the world perfectly well, including the fact that I’m
slowly starving to death? There is nothing conceptually impossible about an
entity that merely monitors bad states: my car monitors its oil pressure to
inform me when it is low. But it will continue to drive without oil up until it
destroys itself.

Note that one cannot just say that cars do not perform homeostatic reg-
ulation and we do. That does not settle the issue: the dark room problem is
an appeal for explanation about why and how we do homeostatic regulation,
as it appears that PC/FEP does not explain this (and is compatible with the
opposite). Nor will it help to appeal, as Hohwy (2013, 85–87) sometimes does,
to minimizing average prediction error over longer timescales. The problem is
that, for all we’ve said, the dark room creature has very low prediction error
at any point—far lower than you or I do, given the complicated and hard-to-
predict environments in which we find ourselves. Its average prediction error
is thus lower than ours. Its total prediction error is lower too, because dying
in a dark room gives you very little time in which to accumulate error.3 Death
can’t be held against the dark room creature: in the long run we are all dead.
The challenge is thus to say why some of us stave it o↵ for longer than others.

Prediction alone, even prediction of signals of danger, is not enough to
get us to the adaptive actions that we in fact perform. That is, again, why
most theories of action incorporate both belief and desire, or credence and
preference, or something which promotes action rather than tracking the world.
PC says it can do more with less. But that’s only plausible if it can actually
account for motivation.

1.3 What to expect

I have presented the dark room problem in a stark form to emphasize a
point: strictly speaking, prediction and free-energy minimization alone are

3 Compare the old proverb: “If you give a man a fire, you warm him for a day. If you set
a man on fire, you warm him for the rest of his life.”
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not enough to get adaptive action and motivation. That should be unsur-
prising: both predictive coding and free energy minimization are extremely
general processes, broadly applicable to all kinds of systems. A homing tor-
pedo attempts to minimize free energy by minimizing the di↵erence between
its current inputs and its expectation that the target be dead ahead. The bet-
ter it does so, the less likely it is to survive the trip. That’s because the homing
missile ‘expects’ to ram its target, and minimization of surprisal with respect
to that expectation results in its demise.

I emphasize this point because most presentations of FEP and PC pass
over it quickly on the way to the standard solution. The mere fact that some
system minimizes free energy (perhaps by implementing a predictive coding
architecture) does not say anything at all about how it will act, because it does
not say anything about what that system expects. The dark room problem
merely makes this gap more dramatic.

I will turn to the proposed augmentations shortly. But before I do, it’s
worth emphasizing that these are augmentations. That will be important for
evaluating the ultimate theoretical power of FEP and PC. Proponents of both
are fond of emphasizing the simplicity of the basic story. So for example. Clark,
singing the praises of PC, writes:

The sheer breadth of application is striking. Essentially the same models
here account for a variety of superficially disparate e↵ects spanning
perception, action, and attention. Indeed, one way to think about the
primary “added value” of these models is that they bring perception,
action, and attention into a single unifying framework. (2013, 201)

Yet the degree of ‘unification’ involved must be evaluated with care—the basic
story is straightforwardly inadequate, so it is the details of augmentation that
must do the explanatory work, and thus provide the touchstone against which
we evaluate the full theory.

Proponents owe us such a story. It will not do, for example, just to note
that there must be some set of expectations that does the job: we don’t explain
how an organism stays alive by starting with the premise that it stays alive.
The case of life is especially pressing in this regard. Every single organism that
has ever lived either has died or will die comparatively soon. It is a remarkable
trick to stay alive, and the trick is clearly a fragile one. The details matter.

With that in mind, here is the shape of the argument to come. In section 2,
I begin by considering the standard set of augmentations as they are presented
in the predictive coding literature. I will argue that most don’t work, and the
ones that might work are mechanistically intractable. The predictive coder
appears to be able to solve the dark room problem only at the expense of
assuming an intractably complex set of innate expectations.

I then move, in section 3, to the more general formulation posed by FEP. I
argue that there is a formulation of FEP which does not run into the problems
faced by PC, but only because it is pitched at an extremely abstract level.
Further, I claim that FEP so construed is literally false; it is best considered
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as an idealized model which must be altered in various ways in order to make
it true to di↵erent systems.

Wet blankets thus thrown, I will conclude on a more upbeat note. Ambi-
tious versions of FEP and PC appear to require internal representations of a
fairly meaty sort. In section 4, I show that moving away from these ambitious
versions leaves plenty of room for an embodied and extended account of the
mind.

2 Prediction and expectation

2.1 Augmenting the standard story

Predictive coding alone cannot account for motivation: that is the thrust of
the dark room problem. To account for motivation, the standard presentation
of PC makes at least three additions. First, predictions need to be able to drive
action. Building that in (in some form) is acceptable enough, the line goes,
because prediction mismatch can be dealt with in two ways. Either the model
can be updated to fit the sensory input (as in ordinary perceptual learning),
or the sensory input can be changed to fit the model (by taking appropriate
action). Either way of reducing prediction error is fine as far as the basic idea
goes; in Clark’s pithy phrase, “Motor control is just more top-down sensory
prediction” (Clark 2015, 21). If we assume that motor control is also tightly
linked to sensory input by the same sorts of predictive processes that govern
model formulation, then we have the possibility for action.

The mere possibility for action is not yet enough, however. Without a
further story, it is hard to see why the predictions that drive action wouldn’t
just be revised in light of recalcitrant experiences (Huebner, 2012). I’m hungry.
I predict that I eat when I’m hungry, which should drive eating. But I’m not
eating. Prediction error ought to drive me to revise my model. I could do so by
abandoning the conditional. If I stop predicting that I eat when I’m hungry, I
starve. A bad result.

Most ways of avoiding this do so by introducing a second mechanism which
makes the desire-like predictions di�cult or impossible to revise. Hence action
becomes the only way to minimize prediction error. I’ll adopt Hohwy’s (2013)
formulation, on which prediction error is always evaluated in the light of an
independent estimate of the precision of the prediction. Both top-down models
and bottom-up sensory states come with a precision—that is, an estimation
of the variance of the predicted quantity. Precision can be used to give a
kind of ‘gain’ on sensory signals which determines how seriously they ought
to be taken (crudely, noisy sensory input loses against a precise model, and
vice versa). Given such a mechanism, and the assumption that the relevant
motivating states take a high enough precision to avoid revision in ordinary
circumstances, desire-like predictions can become e↵ectively impossible to re-
vise. Further, since the parameters used to estimate precision are themselves
something which can be innate ((Hohwy, 2013, 64ff)
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As it stands, the story still doesn’t explain why any particular action is
motivated rather than any other. We need to know why we do things that
help us survive, rather than (as the homing torpedo does) things that help
us perish. The third and final step involves postulating that organisms have
an innate set of predictions that are determined by the states that are good
or bad for them. Friston outlines the strategy in response to the Dark Room
problem:

. . . when we enter a dark room, the first thing we do is switch on a light.
This is because we expect the room to be brightly lit (or more exactly,
we expect our bodily movements to bring this about). In other words,
the state of a room being dark is surprising because we do not expect
to occupy dark rooms. (Friston, 2013, 213)

Or consider Hohwy:

It is true we minimize prediction error and in this sense get rid of
surprise. But this happens against the background of models of the
world that do not predict high surprisal states, such as the prediction
that we chronically inhabit a dark room (Hohwy, 2013, 87)

Or Seth, who claims that the principles behind PC mandate:

that organisms—in virtue of their survival—must avoid surprising states,
where surprise is meant in an information theoretic sense as the negative
log probability of the occurrence of an event.. . . avoidance of atypical
events (i.e., homeostatic regulation) necessitates a generative/predictive
model of the causes of sensory inputs.(Seth, 2014b, 270-271)

As these expectations are crucial for survival, they must be at least partly
innate. As Friston puts it: “This surprise depends upon (prior) expectations,
but where do these prior beliefs come from? They come from evolution and
experience, in the sense that if we did not have these prior beliefs, we would
be drawn to dark rooms and die there” (2013, 213). These three steps to-
gether complete the standard picture. An organism gets out of the dark room
because it expects to be doing something else. There is a mechanism which
minimizes surprisal—that is, the di↵erence between its current sensory state
and its expectations—and that mechanism is blocked from merely changing
the organisms expectations by the high precision put on the innate expecta-
tions. Hence it acts, and lives to fight another day.

Such is the story. Yet it will be successful only if we can spell out the
expectations involved in the third step. That is nontrivial. I argue that once
we try to make those expectations more precise, PC faces a dilemma. Either
the relevant predictions are couched in terms of states of the world or over
actions that the organism might take. Both are problematic: the former is
empirically inadequate. The latter ends up too complex to be a plausible story
about mechanisms, and is no longer distinguished from the sorts of belief-desire
theories that PC was supposed to augment.
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2.2 The soft tyranny of low expectations

Begin with predictions about states. That is, suppose that organisms have a
number of predictions about states they might find themselves in, and seek
to stay in likely states and avoid unlikely ones. These must be specified at
the right fineness of grain. ‘Avoid death’ is fine counsel, but not yet a policy

that I might follow. Conversely, the predictions cannot be too fine-grained: any
of our states, described finely enough, is extremely improbable. The chance
that anyone is sitting at this particular chair, drinking co↵ee made from these

beans, at this time of morning is vanishingly small, despite its accuracy.
The trick will thus be to define these states in a useful way. Further, any

successful strategy must identify states that are good for the organism with
states that are typical for the organism (mutis mutandis for the bad). That’s a
consequence of the double-edged nature of predictions. The very same entities
must (on the PC account) be able to function both as claims about the world
and as what motivates appropriate actions.

That is where the problem arises. There is no way to read ‘typical’ on
which the typical and the good actually align.

For starters, ‘typical’ can’t be defined by relation to an organism’s actual
life history. That is, I can’t predict that I will be in states that I have mostly
been in before. Organisms live hard lives. I might have always been a little
hungry. That makes hunger the typical state. It is still not one that I ought to
seek out. Conversely, I might never have eaten my fill. That does not mean I
should eschew the chance should it arise. Indeed, there are atypical states that
lead to death, but which organisms are clearly motivated to pursue. Salmon
spawn once and die. There is clearly some very strong drive that lies behind this
behavior. That drive, trivially, cannot require the salmon’s future to resemble
its past.

That is presumably why most PC theorists make the base broader, sug-
gesting that we ought to make reference to the typical states of our conspecifics
(which includes, I’ll assume, past conspecifics in evolutionarily similar circum-
stances). So for example, Hohwy writes:

[a] creature needs to be endowed with prior beliefs that tie it to its
expected states. If it chronically expects to be in what are in e↵ect its
low surprisal states, then it will sample the world to minimize prediction
error between those expectations and the state it actually finds itself
in. . . These expectations are defining of the creature, because they tell
us its expected states and thereby its phenotype. (Hohwy 2013, 85-6)

Predicting that one will be a typical conspecific has some obvious advantages.
Individual salmon spawn but once in a lifetime, but many salmon spawned:
what is atypical for an individual life might be typical when we zoom out to
the collective history of the species.

(Note that while the relevant predictions track facts about conspecifics,
they must be about my own states. That is, I predict that I drink when thirsty,
though I do so because my conspecifics typically drink when thirsty. That’s
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because it must be the mismatch with my own state that drives appropri-
ate action, and my own state provides very little evidence about the typical
conspecific.)

Alas, even reference to the typical conspecific won’t do either. Evolutionar-
ily typical states need not be the most adaptive ones. Most acorns rot (Gri�ths
and Gray, 1994). Most juvenile fish are eaten before adulthood (Dahlberg,
1979). Conversely the adaptive actions may not be typical of the species.
Among southern elephant seals, most males never mate (Fabiani et al, 2004).
It would be disastrous if each took that as reason to avoid it. Again, there is
a wedge between what is typical and what is good, even when we broaden the
reference class to include conspecifics.

Many of our conspecifics may be failures. They are thus a poor guide to
what we ought to do. That suggests a narrower reference class. Perhaps it is
only the successful conspecifics that count. Even if most of my conspecifics
never mated, the successful ones obviously did. They are the ones I ought to
emulate. (Dale Carnegie philosophy of mind: expecting to be successful is the
best way to end up successful.) We might cash out success in a variety of
ways—perhaps it is only the conspecifics that reproduced, or that had espe-
cially high fitness, that ought to be counted.

However it goes, exactly the same problems recur. On the one hand, there
might be situations that are extremely good, but rare even for successful con-
specifics. Few successful humans have won the lottery. That’s no reason to burn
a winning ticket. Conversely, even successful conspecifics might have lived in
harsh environments with unfortunate features. Most humans, even reproduc-
tively successful humans, have been illiterate. They were successful because
they adapted to their environment without the ability to read. But that’s no
reason to avoid literacy now.

In addition to the same old issues, reference to successful agents—especially
if highly idealized—introduces two more subtle problems. First, there is vari-
ation among conspecifics. Successful conspecifics might thus be better placed
than you. If the most successful seals were larger and so able to win fights
for mates, then weakling seals would do worse to imitate them. Conversely, I
might know more than the successful conspecific. Most of my ancestors would
be struck dumb with amazement were they to see a flashlight. I shouldn’t do
the same if the lights go out.

Second, there will be situations that successful agents entirely avoid. If
so, then predictions defined relative to the states of actual agents will be
undefined. But we have motivations in bad states as well as good. So (as a
crude example), what did the successful agents do when they found themselves
naked in the snow? Suppose this has just never happened: successful agents
were and are always smart enough to bring a coat. But then the successful
agents o↵er no guide to what we should do when we find ourselves in that
situation.

Note that the problem is not merely that being naked in the snow is surpris-
ing. It is. It is rather that getting out of the snow by going inside is equally
surprising, because it never happens among the successful. Yet as practical
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problems go, this is not a particularly complex one: if you’re naked in the
snow, go inside. That is good advice even if no successful agent has ever had
occasion to take it.

While the example is contrived, the problem is more general. So long as any
PC account of motivation fixes predictions based on frequent or likely states
of an organism, it will be unable to give counsel in entirely novel situations.
Yet being able to recognize novel situations and avoid them (for threats) or
exploit them (for opportunities) is one of the hallmarks of adaptive behavior.

2.3 Predicting policies

Spelling out the adaptive actions in terms of states didn’t work. An important
reason why it failed was because the presumed repertoire of actions was so
poor. The only actions available to organisms were to avoid the unlikely states
and seek the likely ones. But once we specified the states at any level of
precision, we discovered that there were unlikely but good states, and likely
but bad ones. Mere ‘approach’ and ‘avoid’ imperatives might be enough for
simple organisms, but they can’t be enough for any moderately complex one.
If I’m hungry, I can’t do any old thing: I need to take a complex series of
actions in order to find food.

A natural response to this challenge is to move to predictions about the
activities of the successful conspecific: that is, what the successful conspecific
would have done given your situation. As Friston, Samothrakis, and Montague
put it, the relevant prior beliefs “are not about states of the world but tran-
sitions among states (i.e., a policy)” (Friston et al, 2012a, 524). The proper
counsel to the hungry is not simply that they should avoid being hungry, but
to look for food.

In general, then, let’s assume that organisms have predictions about the
optimal actions to take when they face challenges. Note here that the pre-
diction error mismatch would no longer be with the state of being hungry,
but rather with predictions like “I look for food when I’m hungry.”4 As with
states, the precision on this prediction will have to be kept arbitrarily high,
lest I infer from my lack of action that I am wrong about what I do.

This brief sketch would obviously need further refinement. However it is
spelled out, though, PC faces a di↵erent, equally bad, problem.

We need predictions about action in order to account for motivation. But
those must be in addition to the ordinary predictive models (“I am hungry,”
“This room is dark”) that underly perceptual inference. We act, but we also
represent the world. That means PC has now carved o↵ two types of state.

4 That would solve another problem for prediction in terms of states. On most versions
of PC, “...perceptual content is the predictions of the currently best hypothesis about the
world” (Hohwy, 2013, 48). As Wolfgang Schwartz points out (personal communication),
if we took this literally it would mean that we act because we hallucinate the goal state
and thereby move towards it. That is absurd. An action-based view, by contrast, lets the
organism veridically model both the problem and progress towards the solution.
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One has content about states of the world, needn’t be innate (except in broad
outlines), tracks states of the world, and changes in response to perceptual ev-
idence. The other has content about future actions, must be fairly fine-grained
and innate, drives action, and is immune to revision through perceptual evi-
dence. All of which is to say that we’ve just reconstructed the classic di↵erences

between beliefs and desires. There are now states with a mind-to-world direc-
tion of fit and states with a world-to-mind direction of fit (Anscombe, 1957).
Further, we’ve had to build in those di↵erences by hand. That makes Clark’s
promise of bringing “perception, action, and attention into a single unifying
framework”(2013, 201) seem like a bit of a bait-and-switch. There is a single
type of process, true, but the complexity has simply been pushed out into the
parameterization.5

Further, framing the motivating states in terms of actions reveals how
complicated the PC story would have to be. Defining prediction error in terms
of states was at least simple: being too cold is bad, so ceasing to be cold is
good. That wasn’t enough to produce adaptive action, because it couldn’t tell
the cold organism the right thing to do. Yet once we start building in adaptive
actions as part of the predictions, we realize just how complex they would
have to be. In the ordinary course of things, we have to choose between many
actions at a time. Actions thus have to be ranked against one another. If I am
hungry and I need to plan a lecture, I must decide which comes first—and
that in turn will depend on many di↵erent idiosyncratic considerations about
context. Many actions can be satisfied in a variety of ways, and the correct
action is usually context-sensitive.

This challenge is formidable for a system that has only one type of primitive
with which to work. Note, for example, we can’t simply pack the adaptive
actions into a series of conditional predictions like “When (C1 ^ C2 ^ C3...),
I will (A1 _ A2 _ A3..).” There are astronomically many di↵erent predictions
of that sort that that even simple agents need to satisfy. Ordinary belief-
desire models can avail themselves of the standard combinatorial resources of
computational theories to try to sort out these problems. It is not at all clear
how hierarchy plus prediction error could do the job. (Indeed, in this regard
PC seems to face the exactly the same set of problems as did traditional
behaviorism (Putnam, 1967/1991).) Further, the vast majority of these must
be innate if the organism is to have any chance at survival—for remember,
without these additional expectations in place, neither FEP nor PC can solve
the dark room problem.

Nor is it clear how we could come to learn about changes in the most
adaptive ways of acting. I am transferring through LAX. I notice a sign saying

5 Compare: universal Turing machines can also be made very simple in the sense of having
relatively few states and symbols. Further, such simple machines are completely universal
in the sense that the same process does whatever can be done. But that comes at the cost of
considerable complexity in coding the inputs (Minsky, 1967, §14.8). As such, the simplicity
and universality of minimal Turing machines does not constitute an argument in their favor
as a plausible architectures of mind. (There are, of course, many other considerations against
TM architectures.)
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that a new walkway connects two terminals, and I thereby learn that I could
walk that way to catch my flight. How does that work? Must we say that
my conditional expectations are defined over every possible combination of
contexts? But it’s a bit of a stretch to think that my innate endowment of
expectations includes facts about construction at LAX. Conversely, suppose I
find that my old favorite walkway at LAX has closed down. Recall that my
previous expectation—‘When I have a tight connection, I will go down this

corridor’ must have been given an arbitrarily high precision (otherwise, upon
being late and standing in front of the corridor I might just as well have revised
my model about how I acted rather than taking the path, and so missed my
flight). But then if that expectation is un-revisable, then it is un-revisable even
when that same action starts becoming maladaptive.

Su�cient cleverness may let PC theorists avoid these di�culties. an empir-
ically adequate story, though, seems likely to be very, very complex. That is
the deep issue. Again, the bookkeeping with one state gets complicated, while
a system with more primitives (such as a belief-desire model) can more easily
keep track of shifting needs, goals, and facts about the world. It is therefore not
obvious that PC built along these lines can solve the dark room problem. If it
does, it may well closely resemble more traditional theories about motivation.

3 Free energy and explanation

The preceding story was about a proposed mechanism, predictive coding,
which was meant to implement the process described by FEP. FEP itself can
be read as more abstract, however: as a very general story which is meant to
describe and explicate whatever particular mechanism happens to move us.
On this reading, to talk about an organisms’ expectations of the world is not
to propose that there are specific, concrete things which play a causal role
in driving behavior. Rather, talk about minimization of free energy and an
organisms’ expectations is meant to be something like a description of how
whole organisms behave. On such a story, what makes it true that I expect
to go inside when it is cold may well be something like a traditional desire:
the point is not to describe mechanisms but rather the overall dynamic of a
system.

So conceived, FEP would still be vulnerable to the arguments in section
2.2, as those concerned the general problem of cashing out expectations in
terms of states. FEP may well be immune to the arguments in section 2.3,
however. Those arguments concerned unattractive features of a specific way
of implementing expectations. The proponent of FEP could simply claim that
people behave as if they have an astronomical list of fine-grained conditional
expectations. That is a reasonable response, so long as we are clear that people
don’t behave thus because each of those expectations are individually embod-
ied in the nervous system.

Even considered abstractly, however, I think that we ought to be wary of
the FEP. For the dark room still raises its head: we ultimately want abstract
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principles to describe and constrain causal stories. It is not obvious that FEP
actually does so.

It will not do to suggest, as Friston sometimes does, that FEP makes
survival so obvious as to be something like a tautology. So for example, he
claims that the FEP

means a Dark-Room agent can only exist if there are embodied agents
that can survive indefinitely in dark rooms (e.g., caves). In short, Dark-
Room agents can only exist if they can exist. The tautology here is
deliberate, it appeals to exactly the same tautology in natural selection
(Why am I here? — because I have adaptive fitness: Why do I have
adaptive fitness? — because I am here). . . In fact, adaptive fitness and
(negative) free energy are considered by some to be the same thing.
(Friston et al, 2012b, 2)

Similarly, just before discussing the good regulator theorem (about which more
shortly), Hohwy writes that “. . . in a circular sounding way, the idea also as-
serts that the fact that we tend to find these creatures in certain states and
not others explains why they have the expectations they have” (Hohwy, 2013,
86).

Appeal to apparent tautologies should trouble you. For whatever tautolo-
gies do, they don’t explain why things happen. At best, they give us reason to

believe that something is the case. But philosophy of science has moved away
from epistemic conceptions of explanation and towards ontic ones (Woodward,
2003; Craver, 2007). Good explanations detail a causal story, and it is not ob-
vious that FEP does so.

Friston’s parallel with natural selection is telling in this regard. Despite his
claim, very few biologists or philosophers consider natural selection to embody
a tautology (claims of tautology are usually associated with the enemies of
evolutionary theory). First, natural selection says that heritable characters
are responsible for at least some reproductive success, and this explains their
prevalence in subsequent generations. Second, some heritable traits do more
than correlate with survival: they are also part of the mechanism for survival.
They thus confer a propensity for survival both in the organism and in the
subsequent generations that inherit the trait. Both responses, note, assume
that what is important for explanation are the particular traits that causally
contribute to survival in present and future generations (Sterelny and Gri�ths,
1999, 84-5). It is the causal story that explains adaptation, and that causal
story goes in one direction.

The right direction of explanation must go from minimizing free energy
to survival. Yet insofar as FEP implies a causal story about that direction of
explanation, it appears to be wrong. On the one hand, minimizing free energy
cannot be su�cient for survival. Nothing is su�cient for survival—to repeat
a theme that recurs, everything dies. However we build in facts about the or-
ganism, there are obviously situations where we minimize free energy and yet
perish. Consider, for example, Hohwy’s example of the unfortunate mobster
hurtling towards the bottom of the sea, cement overshoes dragging him in-
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exorably downward ((Hohwy, 2013) 85-86, embellished). Hohwy suggests that
the best our mobster can do to minimize surprisal (and therefore free energy)
is to use perceptual inference to at least accurately model his sorry state. But
of course, such accurate modeling—and so minimizing surprisal as best the
agent can—cannot actually prevent his death.

Conversely, minimizing free energy cannot be necessary for survival either.
I think this fact is often obscured by the contrast cases authors choose when
they explicate FEP: the options are either being happy and healthy or else
hurtling towards the bottom of the sea. But there is a large grey area between
the two: life mostly requires getting by well enough, most of the time. Yet
FEP places an austere set of constraints on organisms: they must minimize
free energy, and so resist change, in some way that approximates optimality.
We know humans aren’t optimal, though. We can’t be. We die. We die in
situations that other humans successfully navigate. Every day, people step
o↵ the curb without looking, drunkenly taunt crocodiles, work on live wires,
and text while changing lanes. Sometimes that works out, and sometimes it
doesn’t. Even when the stakes are lower, we’re often less than robust.

Natural selection requires di↵erential fitness between organisms: that is,
some have to be doing better than others within a niche.6 Friston, confusingly,
even seems to agree with this, claiming that within a niche “. . . some creatures
(models) are more optimal than others” (Friston et al, 2012b, 6). But ‘optimal’
is not a comparative; if there is variation, some creatures aren’t optimal. I
doubt, then, that any living creature comes close to minimizing free energy:
most of the time, we just keep it low enough to avoid dying, and we do not do
so robustly.

Indeed, I think that the problems with PC ultimately derive from its links
to FEP. The focus on minimizing prediction error, along with the corporal
bottleneck that means we can only make one action at a time, is precisely
what makes it so di�cult to spell out the relevant predictions in terms of
states. The absolute nature of minimization leaves no room for intermediate,
partial satisfaction of desires. In any given situation, there can only be one
right thing to do. If that is eating an apple, then eating half an apple is as bad
as eating a chunk of hot lava. Neither minimize free energy, and so neither can
be the right solution. The FEP picture thus reminds me of the Stoic position
that good does not admit of degree, and hence that

. . . just as a drowning man is no more able to breathe if he be not far
from the surface of the water, so that he might at any moment emerge,
than if he were actually at the bottom already, and just as a puppy on

6 An anonymous reviewer suggested that Friston simply uses ‘existence’ and ‘being well-
adapted’ as synonyms. Perhaps so, but they are not synonyms, precisely because there must
be variation in fitness to drive natural selection. Further, a change in environment can make
an existing organism poorly adapted (by, for example, rendering it sterile) without changing
whether or not it continues to exist. Finally, evolution and adaptation requires organisms
to do more than exist—they must also reproduce. Replication is fundamental to Darwinian
theory (Godfrey-Smith, 2009). Yet FEP says very little, as far as I know, about that more
specific requirement.
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the point of opening its eyes is no less blind than one just born, similarly
a man that has made some progress towards the state of virtue is none
the less in misery than he that has made no progress at all. (Cicero De

Finibus III.14.48, Loeb translation)

That is why expectations had to be as numerous as situations for action: when
there is no room for half-measures, every possible context must be addressed.

I find absolutism as unappealing in philosophy of mind as it is in ethics.
As many authors have stressed, the problems of living have to be solved in
real-time, with finite resources, in uncooperative and rapidly changing envi-
ronments (Feldman, 2013, 27). We have good reason to think that evolution
should prefer systems that are good enough, rather than systems that would
be optimal in the long run (Simon, 1996).FEP may tell us what the best or-
ganisms look like, and departure from optimality may even (in many cases)
increase the chance of death. But again, we constantly face the chance of death,
and yet persist long enough to count as survival.

None of this is to suggest that considerations of ideal or optimal sys-
tems have no place in theory-building. They do. But there are idealizations
and idealizations. FEP strikes me as closer to what McMullin (1985) called
a Galilean idealization: literally false, but with some understanding gained
via over-simplification. Such idealizations can often be elaborated to be true
of particular systems, and those elaborated models—which often look very
di↵erent from the original model—can have considerable explanatory power
(Klein, 2008).7 But if this is the case, then it is worth keeping in mind that
FEP is a starting point from which one might develop explanations, and that
its defense would ultimately rest on the empirical adequacy of detailed models
which spring from it. Simplicity does not count in its favor, for FEP is simple
in the way that friction-free planes and infinite populations of bunnies are
simple: that is, a deliberate simplification, which buys scientific fruitfulness at
the cost of literal truth.

4 Conclusion: good regulation requires getting out of your head

The preceding has been pessimistic about both FEP and PC’s prospects as
Grand Unified Theory of the mind. I hope to end on a more upbeat note.
Many have noted—either with pride (Hohwy, 2013) or horror (Anderson and
Chemero, 2013)—that the ambitious forms of predictive coding appear to be
incompatible with the embodied, extended turn in philosophy of mind. Not
everyone accepts this conclusion. Clark (2013), notably, denies it. But when

7 General principles about optimal function may also o↵er guidance on the boundaries
and constraints on such organisms. These constraints are likely to be very broad, and so very
easy to satisfy.Friston, for example, notes that “the free-energy bound on surprise tells us
that adaptive agents must perform some sort of recognition or perceptual inference” (Friston
et al, 2012b, 6). Undoubtedly true, but not particularly controversial. Leibniz was probably
the last major philosopher to deny that adaptive action required causal contact with the
external world. Few were convinced.
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PC is pitched in the heroic register, it does seem hard to resist the conclusion
that internal models alone are su�cient to account for behavior.

I have no particular stake in the embodied/extended cognition debates. It
strikes me, however, that several of the considerations advanced above might
leave more room for embodied and extended models.

To begin, consider a principle sometimes invoked by proponents of PC:
Conant and Ashby’s Good Regulator Theorem (GRT) (1970). Conant and
Ashby showed that any system that is an optimal regulator—that is, a system
that can reliably maintain itself in a set of ‘good’ states—must model its
environment. The GRT is a cybernetic principle and, as Seth persuasively
argues, PC/FEP is the modern inheritor of the cybernetic tradition (Seth,
2014a). Friston explicitly links GRT and FEP, claiming that

Under the free-energy principle, the agent will become an optimal (if
approximate) model of its environment. This is because, mathemati-
cally, surprise is also the negative log-evidence for the model entailed
by the agent. This means minimizing surprise maximizes the evidence
for the agent (model). Put simply, the agent becomes a model of the
environment in which it is immersed. This is exactly consistent with the
Good Regulator theorem of Conant and Ashby (Friston et al, 2012b, 2)

That is exciting news for philosophers, Hohwy argues, because it appears to
put strong constraints on our representational capacities (Hohwy, 2013, 86).
Since we’re alive and kicking, then we must (via the GRT) represent the world
pretty accurately.

GRT is a strange bedfellow for predictive coders. Indeed, GRT makes the
dark room problem especially glaring. The ‘good’ states of the GRT need not
be states of the regulator (Conant and Ashby, 1970, 90). A thermostat keeping
a tank of oil viscous has its optimality measured against states of the tank, not
states of the thermostat. So the GRT does not even pretend to guarantee the
persistence of the regulator. Cyberneticists like Ashby were also quite aware of
this, and spent a lot of time detailing mechanisms and distinguishing classes
of regulatory systems that were specific to organisms (Ashby, 1956).

More importantly, Conant and Ashby note that models which incorporate
feedback (as PC does) can’t be optimal regulators. Feedback systems are al-
ways a step behind. Hence “Error-controlled regulation is in fact a primitive
and demonstrably inferior method of regulation,” and optimal systems must
use completely feedforward predictors (Conant and Ashby, 1970, 92). The fact
that there is error to correct at all shows that we are not good regulators in
the GRT sense. Similarly, minimizing free energy is, on the PC account, a pro-
cess that occurs over unspecified but often relatively long time periods. But
then even in cases where we do minimize free energy, that’s often only after a
stretch of time in which we do not.

Models that incorporate feedback thus cannot be optimal regulators in
Conant and Ashby’s sense. Since it is pretty clear that we do incorporate feed-
back to guide our actions, we cannot be optimal regulators either. There is
an upshot to all of this. Although feedback-driven regulation can’t be opti-
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mal, the requirements it implies are correspondingly less demanding. Optimal
modeling requires having an internal feedforward model that bears some ap-
propriate iso- or homomorphism with the environment (Conant and Ashby,
1970, 96). It is hard to see how such models could avoid being strongly inter-
nalist. Models with feedback have fewer constraints: at their best they require
only a one-to-one correspondence between the set of regulator states and the
set of world-states that require distinct actions (Conant and Ashby, 1970, 96).

Fans of embodied cognition should be pleased. Nothing constrains the
states that satisfy this weaker requirement to be states of the brain. Ashby
is explicit about this, writing that passive devices like the “the tree’s bark, the
seal’s coat of blubber, and the human skull” are all crucial bits of regulatory
networks that screen o↵ environmental variation (Conant and Ashby, 1970,
201). Formally speaking, these play exactly the same regulatory role as the
more straightforwardly representational modeling that the brain does.

That means that much of the ‘modeling’ done by regulators like us can
be done by the body itself (Seth, 2014a). I thus agree with Seth, claim about
the link between homeostatic models and predictive coding, “. . . it is left open
whether such models need be explicitly encoded in control structures or can
remain implicit in an agent’s phenotype” (2014b, 271). This seems especially
obvious for basic homeostatic processes. When we look at what matters for
keeping our bodies alive, we find numerous processes that are not brain-bound.
Our ability to regulate plasma osmolarity or renal creatine levels (say) is crucial
for survival. Yet many of the mechanisms that underly this ability are bodily
and peripheral rather than neural and central.

Even homeostatic processes with a significant central component often de-
pend on peripheral processing. Consider pain perception. Pain perception is
part of a sophisticated homeostatic system that keeps our bodies more or
less intact (Klein, 2015). Yet a substantial portion of pain processing is done
peripherally and spinally, and this peripheral processing is crucial for adap-
tive behavior (Melzack and Wall, 1965). Indeed, it has been one of the gen-
eral trends of pain science in the past century to emphasize the importance
of broad, distributed processing that crosses the central-peripheral boundary
(Melzack, 1999).

In addition to looking to the body, we might also look outward to the
world. I argued that humans are not optimal regulators, as evidenced by the
fact that humans regularly make fatal mistakes. Perhaps you worried that this
was oversold, as fatal mistakes cannot be very common. The frequency is a bit
besides the point: failures are enough to show that we are not optimal. But it
is true that modern humans do not tend to die for stupid reasons.

The ‘modern’ part is crucial, though. Life used to be more precarious. Erik
Larson (2004) recounts, for example, that in 1890s Chicago trains killed an
average of two pedestrians a day. Our improved survival rates are not due to
increased vigilance. Rather, much of the job of modeling fatal contingencies
has been externalized. I confidently navigate Central Station, in a hurry, while
listening to music. I do so because I predict that there will be signs, warnings,
and walls that protect me from potentially dangerous situations. My com-
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plex motivational state—my desire to avoid getting killed by a train—can be
replaced by easier-to-implement policies of avoiding clearly-marked dangers.
That works well: I’ve never once been hit by a train.

Not all motivational contingencies can be o✏oaded into the environment
in that way. Many homeostatic drives are too basic, and some desires are
simply too complex to o✏oad. As fans of extended cognition are wont to
emphasize, however, even complex desires can often be broken down into a
series of simpler, signposted steps. This is why (for example) surgeons and
airline pilots drastically improve their performance by o✏oading important
regulatory steps onto external checklists (Gawande, 2010).

We are not optimal regulators. But insofar as we are regulators, part of our
regulatory capacity is subserved by both our bodies and by structures that we
have placed into the world. Fans of predictive coding are fond of the gnomic
claims that “phenotypes are predictors (models) of their low surprisal states”
(Hohwy, 2013, 86). Given what I’ve said, we can make sense of this by noting
that ‘phenotype’ might in fact cover the whole body and perhaps the local
niche as well.

I am pessimistic about the ability of predictive coding models to handle
the basic motivational states. I intend that to be a productive pessimism. For
I think that backing away from grand ambitions might actually open up space
to explore more body- and world-based senses of representation.
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